
Scripts 

First example 

get-process | where { $_.Handles -gt 750 } | Sort CPU -Descending | select -First 10 
 
get-process | where { $_.ProcessName -eq "chrome" } | select -First 10   

 

Powershell basics 

#POWERSHELL BASICS 
 
 
<# a multiline comment 
 
- Single line comments start with a pound sign(#) 
 
- Not case sensitive, like vbscript 
 
#> 
 
<# 
VARIABLES 
 
Variables must start with a dollar sign($) and are loosely typed.  They can 
store data types, such as integers, strings, bools, arrays, objects, etc... 
You can reassign a variable at will, without getting an error. 
 
Automatic variables are premade, such as $true, $false, $null 
 
#> 
 
 
# Examples of Variables 
$a = 12                         # integer 
$a = "Word"                     # string 
$a = @(12, "Word")              # array 
$a = Get-ChildItem C:\Windows   # object 
$a = Get-Date                   # datetime 
 
<# 
OBJECTS 
 
Everything in Powershell is an object, so they have properties, methods, and  
events.  These depend on what type of object is used.  You will seldom use 
events, so we will skip them. 
#> 
 
#Example of an object 
$processName = "chrome"; # string object 
$processName.length; # length is a method 
#returns 6 
 
$processName.Replace("c", "C") # replace is a method 
#returns "Chrome" 
 
<#  
LOGIC STATEMENTS 
 
Allow you to control the flow of your program.  You use operators  
you might not be familiar with, such as = and <>.  Powershell uses 
operators that start with a dash(-), such as -eq, -ne, -gt, -ge, -lt, -lte, -contains  
#> 
 
# if then statment 
if ($color -eq "blue") { 
    "Match" 
} 
else { 



    "No Match" 
} 
 
#prints Match 
 
# There is also a foreach and loop statements 
foreach ($item in $collection) { 
    #do something with $item 
} 
 
# For loop, often used with arrays 
for ($i = 0; $i -lt $array.Count; $i++) { 
    #do something 
} 
 
# While loop, runs until the condition is no longer true 
while (condition) { 
     
} 
 
<#  
DATA STRUCTURES 
 
Allow you to store and organize data. 
 
#> 
 
# Array 
 
$colors = @('red', 'blue', 'green'); 
 
# Arrays use zero-based index.  So red index is 0, blue = 1, and green = 2 
$colors[0] 
# returns red, the first element 
 
# There is also an Hashtable (or dictionary) 
 
#Hashtable 
$hash = @{ Number = 1; Shape = "Square"; Color = "Blue" } 
 
# Access the elements by name 
$hash["Number"] 
#returns 1 
 
<# 
COMMANDS 
 
Two flavors functions and cmdlets.  The main difference is that functions are written 
in 
Powershell and cmdlets are built in another language, but are accessible in 
Powershell. 
#> 
 
#Command 
Get-ChildItem 
 
#Command w/ parameters 
Get-ChildItem -Exclude *.txt 
 
# Aliases are short cut names or characters.  Dir is the alias for get-childitem Use 
get-alias to see them all 
dir -Exclude *.txt 
 
# Discovering commands 
get-command 
 
get-command *item* 
 
# Getting help 
get-help get-item 
 
# Examples of commands you might use 



 
# Get free space using WMI 
Get-CimInstance -ClassName Win32_LogicalDisk 
 
# Get a list of app pools in IIS 
Get-IISAppPool  

 

Piping VBScript 

set fso = CreateObject("scripting.filesystemobject") 
set folder = fso.getfolder("d:\syslog") 
for each file in folder.files 
    on error resume next 
    if lcase(left(file.name,10)) = "currentlog" then 
        file.name = "ArchiveLog.txt" 
    end if 
next 
 
set folder = nothing 
set fso = nothing  

 

Piping Powershell Scripts 

# Rename a log file 
get-childitem -Path "d:\syslog" | Where-Object { $_.Name.StartsWith("CurrentLog") } | 
Rename-Item -NewName "ArchiveLog"  
 
# Finding users who haven't logged on in 90 days 
search-adaccount -accountinactive -datetime "1/1/2020" -usersonly | disable-adaccount 
 
# Listing IP Addresses for a Computer 
Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter IPEnabled=$true | 
  Select-Object -ExpandProperty IPAddress  

 

Sample Log 

66.249.65.107 - - [08/Oct/2007:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 
"-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)" 
111.111.111.111 - - [08/Oct/2007:11:17:55 -0400] "GET / HTTP/1.1" 200 10801 
"http://www.google.com/search?q=log+analyzer&ie=utf-8&oe=utf-8 
&aq=t&rls=org.mozilla:en-US:official&client=firefox-a" "Mozilla/5.0 (Windows; U; 
Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7" 
111.111.111.111 - - [08/Oct/2007:11:17:55 -0400] "GET /style.css HTTP/1.1" 200 3225 
"http://www.loganalyzer.net/" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; 
rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"  

 

Regular Expressions 

# Find the ip address and when it was used from our log file 
$filename = "d:\Projects\MTUG Talk\samplelog.txt"; 
$regex = '^(\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b) - - \[(.*)\]' 
select-string -Path $filename -Pattern $regex -AllMatches | foreach-object { 
$_.Matches } | foreach-object { $_.Value }  

 

Error Handling 

# Handle errors gracefully 
try { 
    $result = 10 / 0; 
    $result 
} 
catch { 



    "Oops there was a error" 
} 
finally { 
    "Hey I run regardless" 
}  

 

Remote Scripts 

# Run a script remotely to disable hearts on pcs 
invoke-command -computerName PC1, PC5, PC12 -ScriptBlock { 
    Disable-WindowsOptionalFeature -FeatureName "Hearts" 
} 
  
# Microsoft Article on Security Considerations with Remote Scripting - 
https://docs.microsoft.com/en-
us/powershell/scripting/learn/remoting/winrmsecurity?view=powershell-7 
  

Complex Script 

#More complex script 
 
# Creating a job in task scheduler 
$action = New-ScheduledTaskAction -Execute 'Powershell.exe' ` 
    -Argument '-NoProfile -WindowStyle Hidden -command "& {get-eventlog -logname 
Application -After ((get-date).AddDays(-1)) | Export-Csv -Path c:\fso\applog.csv -
Force -NoTypeInformation}"' 
 
$trigger =  New-ScheduledTaskTrigger -Daily -At 9am 
 
Register-ScheduledTask -Action $action -Trigger $trigger -TaskName "AppLog" -
Description "Daily dump of Applog" 
 
#Example from https://devblogs.microsoft.com/scripting/use-powershell-to-create-
scheduled-tasks/ 
 
# Exporting Service Data to Excel 
get-service | select-object -Property Name, Status, @{ Name = 'Timestamp'; Expression 
= { Get-Date -Format 'MM-dd-yy hh:mm:ss' }} | 
Export-Excel 'd:\projects\mtug talk\ServiceStates.xlsx' -WorksheetName 'Services'  

 

 

 

 

 

 


